Гигиенические требования к естественному и искусственному освещению. Требования к рациональному освещению

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ОБЩЕЙ ГИГИЕНЫ

ГИГИЕНИЧЕСКАЯ ОЦЕНКА

ЕСТЕСТВЕННОГО И ИСКУССТВЕННОГО

ОСВЕЩЕНИЯ ПОМЕЩЕНИЙ

ББК я73

Утверждено Научно-методическим советом университета

А в т о р: канд. биол. наук, ст. преподаватель

Р е ц е н з е н т ы: зав. отделом комплексных проблем физических факторов среды обитания человека ГУ «Республиканский научно-практический центр гигиены», канд. мед. наук; доцент кафедры гигиены труда, канд. мед. наук

Гигиеническая оценка естественного и искусственного освещения помещений: Метод. рекомендации / – Мн.: БГМУ, 2005. – с.

Рассматриваются вопросы гигиенических требований к естественному и искусственному освещению, показателям оценки и нормирования освещения.

Предназначается для студентов 3-го курса всех факультетов.

ББК я73

© Белорусский государственный

медицинский университет, 2005

Тема занятия: ГИГИЕНИЧЕСКАЯ ОЦЕНКА ЕСТЕСТВЕННОГО И

ИСКУССТВЕННОГО ОСВЕЩЕНИЯ ПОМЕЩЕНИЙ

Общее время занятий: 3 учебных часа.

Мотивационная характеристика темы: Видимое излучение представляет собой узкий диапазон в спектре электромагнитного излучения Солнца (от 400 до 760 нм), но по физиологическому и гигиеническому значению оно занимает ведущее место среди факторов внешней среды. Дневной свет оказывает благоприятное влияние на организм, стимулирует его жизнедеятельность, улучшает психо-эмоциональное состояние человека (особенно больного). Под его воздействием усиливается обмен веществ в организме, активизируются процессы кроветворения, улучшается работа эндокринных желез и т. д. Режим освещенности играет существенную роль в регуляции биологических ритмов.

Интенсивность освещенности рабочего места имеет большое значение для профилактики нарушений зрения, особенно, при работах, требующих зрительного напряжения. Нерациональное освещение приводит к зрительному утомлению, снижению работоспособности, способствует развитию близорукости . Гигиеническое нормирование уровней освещенности устанавливается в соответствии с физиологическими особенностями зрительных функций людей и отражено в определенных санитарных правилах и нормах. Поэтому врачи любой специализации должны знать суть и роль в жизни человека видимого излучения, обязаны уметь давать соответствующие рекомендации по рациональному использованию освещения для сохранения здоровья.

Цель занятия: Ознакомить студентов с гигиеническими требованиями к естественному и искусственному освещению помещений, показателями для их оценки и нормированием.

Задачи занятия:

1. Овладеть методиками гигиенической оценки инсоляционного режима, естественной и искусственной освещенности учебного помещения.

2. Овладеть практическими навыками работы с люксметром и оценке результатов измерений освещенности.

3. Закрепить знания по нормированию естественной и искусственной освещенности для помещений различного назначения решением ситуационных задач по теме.

Требования к исходному уровню знаний: Для полного усвоения темы необходимо повторить из:

· физики – глаз как оптическая система, система световых измерений, единицы световых измерений;

· биологии – биологическое действие солнечной радиации видимого спектра;

· из физиологии – физиологические функции зрения.

Контрольные вопросы из смежных дисциплин:

1. Дать определение основных показателей, характеризующих освещение (спектральный состав света, световой поток, сила света, освещенность, яркость, коэффициент отражения, равномерность освещения).

2. В чем суть биологического действия видимого излучения на организм человека?

3. Дать определение основных функций зрительного анализатора (острота зрения, контрастная чувствительность, скорость зрительного восприятия, цветовосприятие, адаптация, аккомодация).

Контрольные вопросы по теме занятий:

1. Гигиеническое значение естественного освещения.

2. Факторы, влияющие на естественное освещение помещений. Дать определение понятиям – световой климат, инсоляционный режим.

3. Основные типы инсоляционного режима помещений. Требования к ориентации помещений больницы.

4. Устройство, принцип действия и методика определения освещенности с помощью люксметра.

5. Методика оценки показателей освещения методом. Определение коэффициента естественной освещенности (КЕО).

6. Методика оценки показателей освещения помещений геометрическим методом (световой коэффициент, угол падения, угол отверстия, коэффициент глубины заложения).

7. Нормативные требования, предъявляемые к показателям естественного освещения.

8. Гигиенические требования, предъявляемые к источникам искусственного света и осветительной арматуре.

9. Дать сравнительную характеристику ламп накаливания и люминесцентных ламп.

10. Гигиеническое значение показателей яркости и равномерности освещения. Методика их определения.

11. Принцип определения уровня искусственной освещенности расчетным методом «Ватт».

У Ч Е Б Н Ы Й М А Т Е Р И А Л

ЕСТЕСТВЕННОЕ ОСВЕЩЕНИЕ

Помещения с постоянным пребыванием людей должны иметь, как правило, естественное освещение – освещение помещений светом неба (прямым или отраженным). Естественное освещение подразделяется на боковое, верхнее и комбинированное (верхнее и боковое).

▼Естественное освещение помещений зависит от:

1. Светового климата – совокупность условий естественного освещения в той или иной местности, которые складываются из общих климатических условий, степени прозрачности атмосферы, а также отражающих способностей окружающей среды (альбедо подстилающей поверхности).

2. Инсоляционного режима – продолжительность и интенсивность освещения помещения прямыми солнечными лучами, зависящая от географической широты места, ориентации зданий по сторонам света, затенения окон деревьями или домами, величины светопроемов и т. д.

Инсоляция является важным оздоравливающим, психо-физиологическим фактором и должна быть использована во всех жилых и общественных зданиях с постоянным пребыванием людей, за исключением отдельных помещений общественных зданий, где инсоляция не допускается по технологическим и медицинским требованиям. К таким помещениям согласно СанПиН № РБ относятся:

§ операционные;

§ реанимационные залы больниц;

§ выставочные залы музеев;

§ химические лаборатории ВУЗов и НИИ;

§ книгохранилища;

§ архивы.

Инсоляционный режим оценивается продолжительностью инсоляции в течение суток, процентом инсолируемой площади помещения и количеством радиационного тепла, поступающего через проемы в помещение. Оптимальная эффективность инсоляции достигается ежедневным непрерывным облучением прямыми солнечными лучами помещений в течение 2,5 – 3-х часов.

▼В зависимости от ориентации окон зданий по сторонам света различают три типа инсоляционного режима: максимальный, умеренный, минимальный. (Приложение, табл. 1).

При западной ориентации создается смешанный инсоляционный режим. По продолжительности он соответствует умеренному, по нагреванию воздуха – максимальному инсоляционному режиму. Поэтому, согласно СНиП 2.08.02-89, ориентация на запад окон палат интенсивной терапии, детских палат (до 3-х лет), комнат для игр в детских отделениях не допускается.

В средних широтах (территория РБ) для больничных палат, комнат дневного пребывания больных, классов, групповых комнат детских учреждений наилучшей ориентацией, обеспечивающей достаточную освещенность и инсоляцию помещений без перегрева, является южная и юго-восточная (допустимая – ЮЗ, В).

На север, северо-запад, северо-восток ориентируются окна операционных, реанимационных, перевязочных, процедурных кабинеты, родовых залов, кабинетов терапевтической и хирургической стоматологии , что обеспечивает равномерное естественное освещение этих помещений рассеянным светом, исключает перегрев помещений и слепящее действие солнечных лучей, а также возникновение блескости от медицинского инструмента.

Нормирование и оценка естественного освещения помещений

Нормирование и гигиеническая оценка естественного освещения существующих и проектируемых зданий и помещений выполняется согласно СНиП II-4-79 светотехническими (инструментальными) и геометрическими (расчетными) методами.

Основным светотехническим показателем естественного освещения помещений является коэффициент естественной освещенности (КЕО) –отношение естественной освещенности, создаваемой в некоторой точке заданной плоскости внутри помещения светом неба, к одновременному значению наружной горизонтальной освещенности, создаваемой светом полностью открытого небосвода (исключая прямой солнечный свет), выраженное в процентах:

КЕО = Е1/Е2 · 100%,

где Е1 – освещенность внутри помещения, лк;

Е2 – освещенность вне помещения, лк.

Этот коэффициент является интегральным показателем, определяющим уровень естественной освещенности с учетом всех факторов, влияющих на условия распределения естественного света в помещении. Измерение освещенности на рабочей поверхности и под открытым небом производят люксметром (Ю116, Ю117), принцип действия которого основан на преобразовании энергии светового потока в электрический ток. Воспринимающая часть – селеновый фотоэлемент, имеющий светопоглощающие фильтры с коэффициентами 10, 100 и 1000. Фотоэлемент прибора соединен с гальванометром, шкала которого отградуирована в люксах.

▼При работе с люксметром необходимо соблюдать следующие требования (МУ РБ 11.11.12-2002):

· приемная пластина фотоэлемента должна размещаться на рабочей поверхности в плоскости ее расположения (горизонтальной, вертикальной, наклонной);

· на фотоэлемент не должны падать случайные тени или тени от человека и оборудования; если рабочее место затеняется в процессе работы самим работающим или выступающими частями оборудования, то освещенность следует измерять в этих реальных условиях;

· измерительный прибор не должен располагаться вблизи источников сильных магнитных полей; не допускается установка измерителя на металлические поверхности.

Коэффициент естественной освещенности (согласно СНБ 2.04.05-98) нормируется для различных помещений с учетом их назначения, характера и точности выполняемой зрительной работы. Всего предусматривается 8 разрядов точности зрительной работы (в зависимости от наименьшего размера объекта различения, мм) и четыре подразряда в каждом разряде (в зависимости от контраста объекта наблюдения с фоном и характеристикой самого фона - светлый, средний, темный). (Приложение, табл. 2).

При боковом одностороннем освещении нормируется минимальное значение КЕО в точке условной рабочей поверхности (на уровне рабочего места) на расстоянии 1 м от стены, наиболее удаленной от светового проема. (Приложение, табл. 3).

▼Геометрический метод оценки естественного освещения:

1) Световой коэффициент (СК) – отношение остекленной площади окон к площади пола данного помещения (числитель и знаменатель дроби делят на величину числителя). Недостатком этого показателя является то, что он не учитывает конфигурацию и размещение окон, глубину помещения.

2) Коэффициент глубины заложения (заглубления) (КЗ) – отношение расстояния от светонесущей до противоположной стены к расстоянию от пола до верхнего края окна. КЗ не должен превышать 2,5, что обеспечивается шириной притолоки (20-30 см) и глубиной помещения (6 м). Однако, не СК, не КЗ не учитывают затемнение окон противостоящими зданиями, поэтому дополнительно определяют угол падения света и угол отверстия.

3) Угол падения показывает, под каким углом лучи света падают на горизонтальную рабочую поверхность. Угол падения образуется исходящими из точки оценки условий освещения (рабочее место) двумя линиями, одна из которых направлена к окну вдоль горизонтальной рабочей поверхности, другая – к верхнему краю окна. Он должен быть равен не менее 270.

4) Угол отверстия дает представление о величине видимой части небосвода, освещающего рабочее место. Угол отверстия образуется исходящими из точки измерения двумя линиями, одна из которых направлена к верхнему краю окна, другая – к верхнему краю противостоящего здания. Он должен быть равен не менее 50.

Оценка углов падения и отверстия должна проводиться по отношению к самым удаленным от окна рабочим местам. (Приложение, рис. 1).

ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ

Недостаток естественного освещения должен быть восполнен искусственным, являющимся важнейшим условием и средством расширения активной деятельности человека.

▼Требования, предъявляемые к искусственному освещению:

· достаточная интенсивность и равномерность создаваемого освещения;

· не должно оказывать слепящего действия;

· не должно создавать резких теней;

· должно обеспечивать правильную цветопередачу;

· создаваемый источниками искусственного света спектр должен быть приближен к естественному солнечному спектру;

· свечение источников света должно быть постоянным во времени; они не должны изменять физико-химические свойства воздуха помещений;

· источники света должны быть взрыво - и пожаробезопасны.

Искусственное освещение осуществляется светильниками (осветительными установками) общего и местного освещения. Светильник состоит из источника искусственного освещения (лампы) и осветительной арматуры. В качестве источников искусственного электрического освещения помещений в настоящее время применяются лампы накаливания и люминесцентные лампы.

▼По сравнению с лампами накаливания люминесцентные лампы имеют ряд преимуществ:

1) создают рассеянный свет, не дающий резких теней;

2) характеризуются малой яркостью;

3) не обладают слепящим действием.

Вместе с тем люминесцентные лампы обладают рядом недостатков:

1) нарушение цветопередачи;

2) создание ощущения сумеречности при низкой освещенности;

3) появление монотонного шума во время работы;

4) периодичность светового потока (пульсация) и появление стробоскопического эффекта – искажение зрительного восприятия направления и скорости движения вращающихся, движущихся или сменяющихся объектов.

Для перераспределения светового потока в нужных целях используется осветительная арматура. Она обеспечивает также защиту глаз от блескости источника света, а источник света от механических повреждений, влаги, взрывоопасных газов и т. д. Кроме того, арматура выполняет эстетическую роль.

Для характеристики искусственного освещения отмечают вид источника света (лампы накаливания, люминесцентные лампы и т. д.), их мощность, систему освещения (общее равномерное, общее локализованное, местное, комбинированное), вид арматуры и в связи с этим направление светового потока и характер света (прямой, рассеянный, отраженный), наличие или отсутствие резких теней и блескости.

Отраженная блескость – характеристика отражения светового потока от рабочей поверхности в направлении глаз работающего, определяющая снижение видимости вследствие чрезмерного увеличения яркости рабочей поверхности и вуалирующего действия снижающего контраст между объектом и фоном. Требования, предъявляемые к осветительным установкам, отражены в Приложении (табл. 4).

В основу гигиенического нормирования искусственного освещения положены такие условия, как назначение помещения, характер и условия работы или другой деятельности людей в данном помещении, наименьшие размеры рассматриваемых деталей, расстояние их от глаза, контраст между объектом и фоном, требуемая скорость различия деталей, условия адаптации глаза, движущие механизмы и другие опасные в отношении травматизма объекты и т. д. (Приложение, табл. 5).

Равномерность освещения в помещении обеспечивает общая система освещения. Достаточная освещенность на рабочем месте может быть достигнута путем использования местной системы освещения (настольные лампы). Наилучшие условия освещения достигаются при комбинированной системе освещения (общее + местное). Использование одного местного освещения без общего в служебных помещениях недопустимо.

Оценка искусственного освещения

Искусственная освещенность может быть измерена непосредственно на рабочих поверхностях с помощью люксметра или определена ориентировочно расчетным методом.

▼Согласно МУ РБ 11.11.12-2002 измерение искусственного освещения с помощью люксметра от светильников (установок) искусственного освещения, в том числе, при работе в режиме совмещенного освещения (естественное + искусственное) должно проводиться на рабочих местах в темное время суток, когда отношение естественной освещенности к искусственной составляет не более 0,1. При комбинированном освещении (общее + местное) рабочих мест вначале измеряют суммарную освещенность от светильников общего освещения, затем включают светильники местного освещения и измеряют освещенность от светильников общего и местного освещения.

Для приблизительной оценки искусственной освещенности в дневное время суток, вначале определяют освещенность, создаваемую совмещенным освещением (естественным и искусственным), а затем – при выключенном искусственном освещении. Разность между полученными данными составит приближенную величину освещенности, создаваемую искусственным освещением.

Расчетный метод «Ватт» определения искусственной освещенности основан на подсчете суммарной мощности всех ламп в помещении и определении удельной мощности ламп (Р; Вт/м2). Эту величину умножают на коэффициент Ет, показывающий какую освещенность (в лк) дает удельная мощность, равная 10 Вт/м2.

Для ламп накаливания освещенность рассчитывается по формуле:

Е = (Р Ет)/(10 К),

где Е – рассчитываемая освещенность, лк;

Р – удельная мощность, Вт/м2;

Ет – освещенность при удельной мощности 10 Вт/м, - зависит от мощности ламп накаливания и характера светового потока (находят по табл. 9 Приложения);

К – коэффициент запаса для жилых и общественных зданий равен 1,3.

Формула пригодна для ламп одинаковой мощности. Для ламп разной мощности, расчет освещенности производится отдельно для каждой группы ламп. Результаты суммируются.

При использовании люминесцентных ламп – удельной мощности 10 Вт/м2 соответствует 150 лк освещенности (независимо от их мощности и характера светового потока).

Расчет необходимого количества светильников для создания заданного уровня искусственной освещенности в помещении можно произвести расчетным путем, пользуясь таблицами удельной мощности (Приложение, табл. 6). Эти таблицы составлены для соответствующих светильников и соответствующих коэффициентов отражения потолка, пола и стен (Рпот, Рпол, Рст).

Величина удельной мощности зависит от высоты подвеса светильника, площади помещения и уровня освещенности, который необходимо создать в данном помещении.

Для определения необходимого количества светильников найденную величину удельной мощности (на пересечении необходимого уровня освещенности и площади помещения с учетом высоты подвеса) нужно умножить на площадь помещения и разделить на мощность всех ламп, входящих в светильник. В светильник ШОД входят две люминесцентные лампы мощностью 40 или 80 Вт.

Расчет яркости освещаемой поверхности выполняется по формуле:

L = (Е К)/π,

где L – яркость – сила света, исходящая с единицы площади поверхности в определенном направлении (кандела/м2; кд/м2);

Е – освещенность, лк;

К – коэффициент отражения поверхности (отношение отраженного светового потока к падающему);

Значения коэффициента отражения поверхности: белая –0,8; светло-бежевая – 0,5; светло-желтая – 0,6; зеленая – 0,46; светло-голубая – 0,3; темно-желтая – 0,2; темно-зеленая – 0,1; коричневая – 0,15; черная – 0,1; операционное поле – 0,2; свежевыпавший снег – 0,9; незагоревшая кожа – 0,35.

Уровнем яркости светящейся поверхности определяется ее блескость.

Оптимальная яркость рабочих поверхностей – несколько сот кд/м2. Допустимая яркость источников освещения, постоянно находящихся в поле зрения человека не более 2000 кд/м2, а яркость источников редко попадающих в поле зрения – не более 5000 кд/м2. Яркость, превышающая 5000 кд/м2, вызывает чувство слепимости.

▼Расчет коэффициента равномерности освещенности (отношение минимальной освещенности к максимальной) производится по формуле:

q = (Е · 100%)/Еmax,

где q – коэффициент равномерности освещенности, %;

Е – освещенность исследуемой рабочей поверхности, лк;

Еmax - максимальная освещенность в данном помещении, лк.

При полной равномерности освещения – q равен 100%. Чем меньше значение q, тем не равномернее освещенность помещения. Освещенность самого темного места помещения не должна быть слабее освещенности самого светлого места более чем в 3 раза.

З А Д А Н И Е Д Л Я С А М О С Т О Я Т Е Л Ь Н О Й Р А Б О Т Ы

1. Ознакомиться с гигиеническим требованиями к естественному и искусственному освещению, показателями для их оценки и нормирования (Раздел «Учебный материал»).

2. Записать в тетради общие данные, характеризующие помещение:

· наименование и назначение помещения;

· ориентация окон помещения по отношению к сторонам света (тип инсоляционного режима);

· наличие затеняющих объектов; одностороннее или двухстороннее естественное освещение;

· количество окон;

· форма оконных проемов;

· высота от пола до подоконника; от верхнего края окон до потолка;

· наличие предметов, задерживающих свет;

· окраска потолка и стен.

3. Оценить естественное освещение помещения светотехническим методом:

· определить освещение с помощью люксметра у внутренней стены – 1 м от стены на уровне рабочего места (Е1);

· вычислить КЕО по формуле.

4. Оценить естественное освещение помещения геометрическим методом (косвенная оценка):

· определить световой коэффициент (СК):

o измерить площадь пола;

o измерить площадь остекленения;

o вычислить СК (отношение площади стекла к площади пола);

· определить угол падения (α):

o измерить расстояние от рабочего места до окна (l);

o измерить высоту окна (Н);

· определить угол отверстия (γ):

o измерить высоту окна до точки проекции затемняющего объекта на стекле (h);

o определить величину угла отверстия (γ) по разности углов падения (α) и затенения (β);

· определить коэффициент глубины заложения (КГЗ):

o измерить расстояние от окна до противоположной стены (В);

o измерить расстояние от пола до верхнего края окна (Н1);

o вычислить КГЗ (В/Н1).

5. Дать общую гигиеническую оценку полученным результатам и условиям естественного освещения помещения (Приложение, табл. 3).

6. Описать систему искусственного освещения помещения.

7. Измерить уровень искусственной освещенности на рабочих местах с помощью люксметра.

8. Определить уровень минимальной освещенности расчетным методом «Ватт» (Приложение, табл. 9).

9. Определить уровень яркости поверхности рабочего стола.

10. Произвести расчет коэффициента равномерности освещенности помещения.

11. Дать общую гигиеническую оценку условиям искусственного освещения помещения (Приложение, табл. 10)

С А М О К О Н Т Р О Л Ь У С В О Е Н И Я Т Е М Ы

Решите ситуационные задачи:

1. Комната в общежитии площадью 16 м2 освещается 2 лампами накаливания по 100 Вт каждая. Светильники полуотраженного света, напряжение в сети 220 В.

2. Глубина комнаты 5,5 м, длина 6 м, высота 3,4 м. В комнате два окна, застекленная площадь каждого окна 2,7 м2, ориентация – на запад. Высота окон над полом 2,85 м. Окраска стен – светло-серая, потолка – белая.

Дать комплексную гигиеническую оценку естественному освещению комнаты (учебной): тип инсоляционного режима, световой коэффициент, коэффициент глубины заложения.

3. Центр рабочего стола студента находится на расстоянии 2 м от окна. Высота верхнего края остекленения окна от горизонтальной плоскости рабочего места – 1,91 м. В 15-ти метрах от окна расположено соседнее здание, которое возвышается на 8 м от вышеуказанной горизонтальной плоскости.

4. В жилой комнате одно окно. Ширина – 1 м, высота – 1,8 м. Площадь оконных переплетов составляет 20% общей площади окна. Площадь комнаты 17 м2.

5. При боковом одностороннем естественном освещении учебной комнаты горизонтальная освещенность рабочего места на расстоянии 1 м от стены наиболее удаленной от светового проема составляет 60 лк. Наружная горизонтальная освещенность от рассеянного света атмосферы составляет 7500 лк.

6. Читальный зал площадью 100 м2 освещается 40 люминесцентными лампами по 40 Вт каждая. Напряжение в сети 220 В.

7. В светильник ШОД входят две люминесцентные лампы мощностью 40 Вт каждая.

Рассчитать необходимое количество светильников для рекреационного зала площадью 70 м2. Высота подъема светильников 3,5 м. Нормируемая освещенность должна составлять 150 лк.

ЛИТЕРАТУРА

1. , Познанский Г. Х. Гигиена. Киев: Вища школа, 1984. С. 129 – 133.

2. Руководство к лабораторным занятиям по гигиене и экологии человека /Под ред. . 2-е изд. Москва: ВУНМЦ МЗ РФ, 1999. С. 17 – 27.

3. Общая гигиена: пропедевтика гигиены. Учебник для иностранных студ. /, и др. Киев: Вища школа, 1999. С. 242 – 254.

4. , Горлова по общей гигиене: Учебное пособие. – М.: Изд-во УДН, 1991. С. 31 – 38.

5. Естественное и искусственное освещение. СНБ 2.04.05 – 98.

6. Измерения и гигиеническая оценка освещения рабочих мест. Методические указания МУ РБ 11.11.12 – 2002.

ПРИЛОЖЕНИЕ

Таблица 1

Типы инсоляционного режима помещений

Инсоляционный

режим

Ориентация по сторонам света

Время инсоляции,

% инсолируемой площади пола помещений

Количество тепла за счет солнечной радиации, кДж/м2 (ккал/м2)

Максимальный

Умеренный

Минимальный

Таблица 2

Нормы КЕО (в %) при верхнем и боковом расположении окон

в производственных помещениях

Характеристика

зрительной

работы

Разряд работы

Размер

объектов различения, мм

При естественном освещении

При совмещенном естественном и искусственном освещении

верхнее

боковое

В статье даны принципы и условия работы зрения, рассказывается о гигиенических требованиях к естественному и искусственному освещению, даны рекомендации по защите зрения работников от вредных факторов.

Подавляющее большинство работ, производимых на промышленных предприятиях, осуществляется под контролем зрения; наблюдение за ходом процесса, за работой механизмов и аппаратов, проведение разнообразных операций немыслимы без участия зрения. Поэтому при выполнении почти любой работы орган зрения человека имеет ту или иную степень напряжения и, как и другие органы и системы, при определенной величине этого напряжения и определенных условиях способен утомляться; в свою очередь, утомление органа зрения приводит к общему утомлению организма, так как последний мобилизует имеющиеся у него компенсаторные возможности для напряжения зрения, на что затрачивает дополнительную энергию. Напряжение органа зрения и работоспособность зависят от характера выполняемой работы и от степени и качества освещения на рабочем месте и участке в целом.


Принципы и условия работы органа зрения человека


Орган зрения состоит из глаз, зрительных нервов и зрительных центров головного мозга. Глаз - воспринимающий аппарат органа зрения, построен по типу фотоаппарата. Он состоит из сферической камеры (глазного, яблока), в которой имеется круглое отверстие - зрачок, меняющий свой диаметр, как диафрагма. На задней стенке камеры находятся светочувствительные окончания зрительного нерва. Глазное яблоко заполнено прозрачным стекловидным телом, а перед зрачком расположен хрусталик, выполняющий роль линзы.
Глазное яблоко заключено в белковую оболочку, которая в передней части переходит в прозрачную роговицу. Световые лучи через зрачок попадают на хрусталик, проходят через стекловидное тело и проецируются на задней стенке. Под действием света в светочувствительных элементах возникают импульсы, поступающие по зрительному нерву в зрительные отделы головного мозга, где они преобразуются в зрительные ощущения. Четкое различие предметов, расположенных на близком или дальнем расстоянии, достигается изменением кривизны хрусталика. Зрачок суживается при большой освещенности, ограждая глаз от ослепления, и расширяется при пониженном освещении, помогая рассмотреть слабо освещенные предметы. При слишком слабой освещенности зрачок, расширяясь до максимального предела, далее не реагирует, и, следовательно, световых лучей становится недостаточно для нормального раздражения зрительного нерва; окружающие предметы в таких случаях воспринимаются слабо, с большим напряжением органа зрения в целом. При чрезмерно сильном освещении зрачок сокращается до минимальных размеров, и дальнейшее усиление освещения приводит к проникновению в глазное яблоко излишнего количества световых лучей и, следовательно, к чрезмерному раздражению зрительного нерва, что субъективно ощущается в виде слепящего действия, иногда вплоть до болевых ощущений (рези в глазах).
Работоспособность глаза характеризуется рядом показателей физиологических функций:
острота зрения - способность глаза видеть и различать мельчайшие предметы, детали, форму и очертания;
контрастная чувствительность - способность глаза различать близкие друг к другу по степени яркости поверхности;
цветовое зрение - способность глаза различать цвета и даже оттенки;
устойчивость ясного видения - способность четко видеть и различать мелкие предметы, детали, формы и очертания на протяжении определенного времени;
скорость зрительного восприятия - способность глаза четко воспринимать мелкие предметы, детали, формы и очертания за минимальный период времени.
Все эти показатели в той или иной степени зависят от степени освещенности и качества освещения; лучшие показатели работоспособности глаза получаются при нормальном естественном освещении. Искусственное освещение в большей степени отражается на цветовом зрении, снижая и искажая цветоразличение, что связано с различием спектрального состава искусственного и естественного, света; солнечный или даже рассеянный естественный свет разнообразен по спектральному составу, включает в себя ультрафиолетовое, полную гамму видимого и инфракрасное излучение, в то время как искусственный свет ограничен по спектру.


Общие гигиенические требования к освещению


Одну из основных ролей в рациональном освещении играет уровень освещенности, измеряемый в люксах (люкс - единица освещенности, равная световому потоку в 1 лм (люмен), падающему на освещаемую поверхность в 1 м 2). Чем выше точность зрительной работы, меньше размеры рассматриваемых предметов или их отдельных деталей, их контрастность с фоном, необходимая быстрота их восприятия (при движении), тем больший уровень освещенности должен быть. Эта зависимость положена в основу составления санитарных норм освещения, в которых для каждого вида зрительных работ, условно разделенных на разряды и подразряды, определен минимальный уровень освещенности. При этом регламентируются также качественная характеристика осветительных установок, показатель ослепленности, коэффициент пульсации при использовании газоразрядных ламп и др.

Равномерность освещения также имеет существенное гигиеническое значение. При резкой разнице в уровне освещенности ограниченного рабочего места или тем более рассматриваемого предмета и окружающего пространства в случаях перевода взгляда со светлого на темный участок и наоборот глазу приходится каждый раз приспосабливаться к новым условиям освещенности, такое приспособление к разным условиям освещенности называется адаптацией. Так как адаптация как в ту, так и в другую сторону происходит постепенно, то каждый раз при переводе взгляда с темного на светлый участок и наоборот определенное время работоспособность глаза бывает снижена. Чтобы избежать этого, необходимо обеспечивать более или менее равномерную освещенность во всем рабочем помещении, а не ограничиваться освещенностью только рабочих мест. Исследования в этой области показывают, что, для того чтобы избежать значительной и длительной переадаптации, надо иметь общую освещенность. в цехе не менее 10% суммарной максимальной освещенности на рабочем месте.
В целях предупреждения частой и значительной переадаптации, а также слепящего действия яркого света самого источника освещения необходимо защищать его предупреждая прямое попадание пучка света в глаза работающих и направляя его на рассматриваемую поверхность. Это особенно важно соблюдать при оборудовании местного освещения, когда источник света находится в непосредственной близости к глазам рабочего. Эта же цель преследуется рациональным размещением светильников по отношению к рабочему. Источники света следует размещать так, чтобы они сами или отраженные от блестящих поверхностей лучи не слепили глаза, чтобы при выполнении работы голова, руки или другие части тела, оборудование или сами изделия не затеняли рассматриваемую поверхность.
Рациональное размещение источников света приобретает важное значение при рассмотрении рельефных мелких деталей, при котором соответствующее направление пучка света может способствовать повышению работоспособности глаза, увеличивая контрастность рассматриваемых предметов за счет их собственных теней.
Наконец, важное гигиеническое значение имеет рациональный выбор источников света, особенно там, где требуется тонкое различение цветов. Для большинства видов работ наиболее рациональным является естественный дневной свет, поэтому там, где есть такая возможность, ее надо максимально использовать. Кроме того, естественный свет, в отличие от искусственного, обладает биологической активностью; он активизирует биохимические процессы в организме, тонизирует его, убивает патогенные микробы. При недостаточной освещенности естественным светом целесообразно пользоваться смешанным освещением - естественный плюс искусственный. Выбор источников искусственного света определяется характером зрительных работ: например, для различения цветов лучше использовать лампы дневного света, для выявления дефектов металла или металлических изделий - сочетание общего освещения (ртутными лампами) и местного (лампами накаливания).
Естественное освещение
Естественное освещение в производственных помещениях создается за счет проникновения дневного света через оконные и другие остекленные проемы, а также через специальные сооружения в кровле зданий - фонари. В последнее время для этих целей разработаны и на некоторых предприятиях применяются специальные светопрозрачные покрытия в кровле здания; они могут быть в виде стеклоблоков, светопрозрачных колпаков и других типов. Фонари и светопрозрачные покрытия в кровле применяются главным образом в многопролетных зданиях, где с помощью бокового освещения удается осветить лишь прилегающие к наружным стенам участки производства.
Учитывая, что естественное освещение во многом зависит от разнообразных условий - времени года и суток, погоды - и, как правило, колеблется в весьма широких пределах, об освещенности внутри зданий обычно судят не по его величине, выраженной в люксах, а по отношению освещенности внутри здания к наружной освещенности (освещенности горизонтальной поверхности от рассеянного света небосвода). Эта величина, выраженная в процентах, является постоянной для данного помещения и носит название коэффициента естественного освещения (к. е. о.). По этому же коэффициенту нормируется естественное освещение; в зависимости от характера и точности зрительных работ предусматривается к.е.о. от 0,1 до 10%.
Для поддержания хорошей светопроницаемости световых проемов последние необходимо систематически очищать, особенно в цехах с выделением пыли, копоти, паров некоторых веществ. В случае отсутствия своевременной очистки остекление со временем настолько сильно загрязняется, особенно копотью, что нередко бывает весьма трудно его. отмыть; в подобных случаях его следует сменить. Для удобства очистки или смены остекления при строительстве промышленных зданий предусматриваются специальные устройства для свободного доступа ко всем остекленным или светопрозрачным поверхностям как снаружи, так и изнутри здания (мостики, передвижные площадки, люльки и т. п.).
Для защиты от слепящего действия прямых солнечных лучей или их отражения от блестящих деталей целесообразно остекление световых проемов покрывать тонким слоем белой краски или простое прозрачное стекло заменять матовым. Однако при этом следует учитывать, что такое светорассеивающее покрытие в определенной степени снизит коэффициент естественного освещения.
Искусственное освещение
Искусственное освещение по своему назначению делится на две системы: общее, предназначенное для освещения всего рабочего помещения, и комбинированное, когда к общему освещению добавляется местное освещение, концентрирующее световой поток непосредственно на рабочем месте. Местное освещение, как правило, в промышленности не применяется.
Искусственное освещение в современных промышленных предприятиях создается разнообразными электрическими источниками света. Наиболее старыми из них и весьма распространенными до недавнего времени являются лампы накаливания. Превращение электрической энергии в световую происходит в них за счет нагревания нити накала до температуры свечения. В настоящее время разработан новый тип лампы накаливания - кварцевые галогенные лампы, представляющие собой кварцевую трубку, внутри которой находится нить накала. Они отличаются от обычных большей световой отдачей, более широким спектром и стабильностью светового потока.
В последние годы широкое распространение в промышленности получили газоразрядные люминесцентные лампы, в которых электрическая энергия непосредственно переходит в световое излучение за счет свечения специальных веществ - люминофоров.
В зависимости от состава люминофора получается различная цветность свечения; то есть различный спектр света. Это качество дает возможность создавать нужный спектр в зависимости от характера выполняемой работы. В настоящее время промышленность выпускает люминесцентные лампы нескольких типов: ЛБ (белого света), ЛД (дневного света) ЛХБ (холодного белого света) и ЛТБ (теплого белого света), причем три последних выпускаются в двух модификациях - обычные и с улучшенной цветностью (ЛД2, ЛХБЦ и ЛТБЦ). Газоразрядные лампы имеют различную форму: трубчатые, кольцевые, у-образные, волнообразные и др.
Люминесцентные лампы имеют ряд преимуществ перед лампами накаливания: они более экономичны, имеют большую световую отдачу, более долговечны, меньше нагреваются, разнообразны по спектру. Вместе с тем они имеют и свои недостатки, среди которых наиболее существенным являются колебания светового потока, так как газоразрядные лампы не обладают достаточным послесвечением и повторяют колебания переменного тока электросети. Колебания светового потока вызывают так называемый стробоскопический эффект, то есть искажение зрительного восприятия движущихся или вращающихся предметов (рябит в глазах), впечатление неподвижности или вращения в другом направлении. При включении рядом расположенных люминесцентных ламп в разные фазы электросети стробоскопический эффект значительно снижается, а при включении в сеть постоянного тока полностью исчезает.
В промышленности используются также люминесцентные ртутно-кварцевые лампы (ДРЛ), состоящие из стеклянной колбы, покрытой изнутри люминофором, и ртутно-кварцевой трубки, размещенной в колбе. Под влиянием ультрафиолетового излучения, возникающего в ртутно-кварцевой трубке, светится люминофор, придавая свету определенный синеватый оттенок, искажая истинные цвета. Для устранения этого недостатка в состав люминофора вводятся специальные компоненты, которые частично исправляют цветность; эти лампы получили название ламп ДРЛ с исправленной цветностью. Именно такие лампы целесообразно применять для освещения рабочих помещений. Учитывая, что лампы ДРЛ обладают большой мощностью и дают интенсивный световой поток, их обычно используют, только для общего освещения высоких производственных помещений.
Учитывая, что и лампы накаливания и люминесцентные лампы не имеют в своем спектре ультрафиолетовых лучей, обладающих большой биологической активностью, в помещениях без естественного света или с недостаточным по биологическому действию естественным светом применяют установки искусственного ультрафиолетового облучения. Это осуществляется при помощи так называемых эритемных ламп, которые по форме аналогичны обычным люминесцентным лампам, но излучают преимущественно ультрафиолетовые лучи. Такие лампы применяются либо в системе общего освещения непосредственно в рабочих помещениях, либо в специальных помещениях, предназначенных для кратковременного, но более интенсивного облучении рабочих после смены,- в фотариях.
Для рационального использования светового потока источники искусственного освещения заключаются в специальную арматуру. Источник света с осветительной арматурой называется светильником. Светильники делятся на три основных типа: прямого света, отраженного света и рассеянного света.
К светильникам прямого света относятся зеркальные и эмалированные глубоко излучатели, в которых металлической отражающей арматурой основной световой поток направляется в одну сторону (чаще вниз или слегка в сторону), они используются для общего освещения. Светильник прямого направленного света в виде металлического отражателя применяется как для общего, так и для местного освещения. К светильникам рассеянного света относится в основном осветительная арматура из молочного или матированного стекла или аналогичных пластмасс. Они применяются для общего освещения при высоте подвеса не более 4 - 5 м в помещениях со светлой окраской стен и потолков и без значительного выделения пыли и копоти.
Для освещения рабочего помещения отраженным светом источники света закрываются снизу отражателем, вследствие чего основной световой поток направляется на потолок или другую плоскость, окрашенную в белый цвет, от которого отражается и равномерно освещает помещение. Такой тип используется для общего освещения и, как правило, для особых зрительных работ (со значительной блесткостью); несмотря на гигиеническую целесообразность, он применяется редко, так как для создания необходимой освещенности требуются большие мощности, чем при прямом свете. Разнообразные светильники созданы для люминесцентного освещения.
В некоторых производствах, где имеет место выделение в воздух рабочих помещений паров или пылей легковоспламеняющихся или взрывоопасных веществ, применяются взрывобезопасные светильники. Они герметично закрывают источник света и тем самым предохраняют его от контакта с воспламеняющимися или взрывоопасными веществами. Для освещения вытяжных шкафов, боксов или других ограниченных пространств, где производятся работы с такими веществами, используется прожекторное освещение. Прожектора устанавливаются за пределами этих пространств (иногда даже за пределами цеха, снаружи), а световой поток от них через остекленное окно или другой остекленный проем направляется в рабочее пространство, освещая его.
Все светильники искусственного освещения по мере их загрязнения пылью, копотью, конденсатом различных испаряющихся веществ и т. п. значительно снижают световой поток и освещенность. Поэтому необходимо систематически протирать лампы и арматуру, а также своевременно заменять перегоревшие лампы (обязательно такими же по мощности и по качеству). Для этого в каждом цехе надо иметь приспособления или специальные устройства для свободного и безопасного доступа к светильникам, особенно общего освещения, размещенным в верхней зоне (телескопические вышки, выдвижные лестницы, устойчивые стремянки и т. п.).

Теги: Охрана труда, работник, вредные производственные факторы, промышленное освещение, зрение, гигиенические требования, освещение, люминесцентные лампы

Искусственное освещение может быть общим, местным или комбинированным .

Гигиеническая оценка искусственного освещения включает: определение уровня освещенности необходимой площади, характеристику источника света и арматуры.

Освещенность - отношение светового потока, падающего на поверхность, к площади этой поверхности. Выражают освещенность в люксах (лк).

При расчете освещенности учитывают: сложность технологического процесса и, следовательно, степень напряжения зрения; длительность и напряженность зрительной работы; контрастность освещения рабочего места и окружающего фона.

Источники света - лампы накаливания и люминесцентные лампы. Их гигиеническая характеристика различна и определяется следующими свойствами ламп:

· долей энергии, превращаемой лампой в световую;

· тепловым излучением;

· спектральной характеристикой видимого излучения;

· устойчивостью светового потока.

Электрические лампы накаливания - это источники света с излучателем в виде нити или спирали из вольфрама, накаливаемые электрическим током до 2500-3300 оС. Чем выше температура накала, тем большая часть излучаемой энергии воспринимается в виде света, т. е. тем более экономична лампа. Однако с повышением температуры накала вольфрама повышается и скорость его испарения, что сокращает срок службы лампы. В настоящее время, чтобы уменьшить скорость испарения вольфрама и сделать лампы более экономичными, их наполняют криптоноксеноновой смесью. Поскольку наличие инертного газа вызывает дополнительные потери мощности, лампы малой мощности (40 Вт и менее), имеющие наименьший коэффициент полезного действия, изготавливают пустотными (вакуумными).

Лампы накаливания имеют целый ряд недостатков:

· малый коэффициент полезного действия;

· сильное тепловое излучение;

· малую долю энергии, превращаемую в световую - (вакуумные около 7 %, криптоноксеноновые - до13 %);

· нити ламп обладают чрезвычайной яркостью для глаз;

· в отличие от дневного света в видимом излучении преобладают желтые и красные части спектра, что затрудняет цветовосприятие и цветоразличение;

· в световом потоке почти отсутствуют ультрафиолетовые лучи, свойственные солнечному свету.

Лампы люминесцентные характеризуются двойным преобразованием энергии: электрическая энергия превращается в энергию ультрафиолетового излучения, а энергия ультрафиолетового излучения - в видимое свечение люминесцирующих веществ.

Люминесцентная лампа представляет собой запаянную стеклянную трубку, наполненную парами ртути и аргоном. На внутреннюю поверхность трубки нанесено мелкокристаллическое люминесцентное вещество. В оба конца трубки впаяны электроды из вольфрамовых спиралей. Электрический ток , проходя сквозь газовую среду между электродами, вызывает свечение паров ртути и образование УФЛ. Воздействуя на люминофор, ультрафиолетовые лучи вызывают его свечение.

В зависимости от типа люминофора и пропорции смеси изготавливают лампы дневного света (ДС), белого света (БС), холодного белого света (ХБС) и теплого белого света (ТБС). Люминесцентные лампы характеризуются незначительным излучением в красной части спектра, что приближает их излучение к дневному свету, но вместе с тем искажает передачу красных и оранжевых тонов. Лампы БС и ТБС дают менее интенсивное излучение в синефиолетовой области, чем лампы ДС. Поэтому лампы дневного света применяются для освещения помещений, в которых требуется тонкое различие цветов и оттенков.

Энергия, превращаемая в световую, в люминесцентных лампах в 3-4 раза больше, чем ламп накаливания, а тепловое излучение незначительно. Срок службы люминесцентных ламп в 3 раза больше, чем ламп накаливания.

Однако серьезным недостатком люминесцентных ламп является колебание светового потока - стробоскопический эффект. Он представляет собой множественные мнимые изображения движущихся предметов, что вызывает утомление зрения, искаженное восприятие движущихся предметов и может стать причиной производственного травматизма . Для предотвращения стробоскопического эффекта необходимо включать несколько близкорасположенных люминесцентных ламп в разные фазы трехфазной электрической сети.

Приведенные различия в гигиенической оценке источников света учитываются при их выборе для освещения помещений различного назначения.

Для освещения производственных помещений рекомендуется применять преимущественно лампы накаливания. В складских помещениях следует использовать светильники с люминесцентными лампами и с лампами накаливания. В кладовых тары лампы накаливания в светильниках должны быть покрыты силикатным стеклом.

Яркость светящейся поверхности люминесцентных ламп незначительна, но для профилактики утомления зрения их, также как лампы накаливания, заключают в специальную арматуру.

Арматура - это устройство, предназначенное для рационального перераспределения светового потока, защиты глаз от чрезмерной яркости, предохранения источника света от механических повреждений, а окружающей среды - от осколков при возможном разрушении лампы.

Важной гигиенической характеристикой арматуры является светораспределение , т. е. распределение освещенности в пространстве. При выборе светильника, кроме светораспределения, учитывается степень защиты источника света от воздействия окружающей среды, что особенно важно в сырых, пыльных помещениях, помещениях с химически активной средой и др.

Светильники (источники света в арматуре), в зависимости от распределения света, подразделяются на четыре группы:

Светильники прямого света - направляют на освещаемую поверхность около 90 % света, но на них могут появляться резкие тени и блики.

Светильники преимущественно отраженного света - нижняя сферическая часть их изготавливается из молочного стекла, а верхняя - из матового стекла. При этом около 65-70 % светового потока направляются в верхнюю часть светильника. Такие светильники применяются в тех помещениях, где требуется рассеянное освещение.

Светильники отраженного света - направляют весь световой поток к потолку. Лучи света отражаются под разными углами от потолка и верхней части стен, вследствие чего тени почти полностью исчезают.

Светильники рассеянного света - создают вполне удовлетворительные условия освещения: слепящее действие их незначительно, на освещаемых поверхностях не образуется резких теней. Однако они, как и светильники отраженного света, поглощают значительную часть света.

Запрещается применять светильники с отражателями или рассеивателями из горючих материалов. В охлаждаемых камерах пищевых продуктов следует применять светильники, разрешенные для низких температур. Светильники должны иметь защитные плафоны с металлической сеткой для предохранения от повреждения и попадания стекла на продукты. Важным гигиеническим требованием является своевременная очистка светильников, так как загрязненная арматура снижает освещенность рабочих мест на 25-30 %.

На пищевых предприятиях проектируется естественное и искусственное освещение в соответствии с требованиями СНиП «Естественное и искусственное освещение. Нормы проектирования».

Санитарные требования к освещению предприятий общественного питания. Естественное и искусственное освещение во всех производственных, складских, санитарно-бытовых и административно-хозяйственных помещениях должны соответствовать санитарным правилам. При этом следует максимально использовать естественное освещение. Показатели освещенности для производственных помещений должны соответствовать установленным нормам.

Для холодного цеха и помещений для приготовления крема и отделки тортов и пирожных кондитерского цеха предусматривается северо-западная ориентация, а также защита от инсоляции (жалюзи, специальные стекла и устройства, отражающие тепловое излучение).

Для освещения производственных помещений и складов необходимо применять светильники во влагозащитном исполнении. На рабочих местах не должна создаваться блескость. Люминесцентные светильники, размещаемые в помещениях с вращающимся оборудованием (универсальные приводы, тестомесы, кремовзбивалки, дисковые ножи), должны иметь лампы, устанавливаемые в противофазе. Светильники нельзя размещать над плитами, технологическим оборудованием, разделочными столами. При необходимости рабочие места оборудуются дополнительными источниками освещения. Осветительные приборы должны иметь защитную арматуру.

Остекленные поверхности окон и проемов, осветительные приборы и арматура необходимо содержать в чистоте и очищать по мере загрязнения.

Цель занятия: изучить гигиенические требования к естествен- ному и искусственному освещению, освоить методы определения и оценки показателей естественного и искусственного освещения помещений.

При подготовке к занятию студенты должны проработать следующие вопросы теории.

1. Состав солнечной радиации. Биологическое и гигиеническое значение лучей солнечного спектра. Общие гигиенические требования к освещению.

2. Естественное освещение. Факторы, влияющие на естественную освещенность помещений. Показатели оценки и нормирование уровня естественного освещения помещений различного назначения.

3. Гигиенические требования к искусственному освещению помещений. Источники света, их гигиеническая оценка. Системы освещения. Характеристика разных типов светильников и светозащитной арматуры.

4. Методы оценки и нормирование искусственного освещения производственных помещений.

После освоения темы студент должен знать:

Методику проведения гигиенического обследования производственного освещения;

Определение инсоляционного режима помещений;

Проведение инструментальных и расчетных определений естественной и искусственной освещенности аптечных поме- щений;

уметь:

Оценить состояние естественного и искусственного освещения в помещениях аптечных учреждений по результатам исследований на соответствие гигиеническим нормативам;

Оценить условия труда персонала аптек по фактору «световая среда»;

Использовать основные нормативные документы и информационные источники справочного характера для разработки гигиенических рекомендаций по улучшению освещения аптечных помещений.

Учебный материал для выполнения задания

Оптический диапазон электромагнитного излучения Солнца, достигающий границ земной атмосферы (от 100 до 60 000 нм), условно делится на три части (инфракрасную, ультрафиолетовую и видимую части солнечного спектра), так как с изменением длины электромагнитных волн изменяются свойства лучистой энергии.

УФ-излучение Солнца в диапазоне 10-200 нм полностью расходуется на образование ионосферы на высоте 50- 80 км от поверхности Земли. Коротковолновое УФ-излучение в диапазоне 200-280 нм (УФ-С), оказывающее выраженное бактерицидное действие, не достигает поверхности Земли; большая его часть расходуется в стратосфере на высоте 20- 25 км на образование озонового слоя, остальная часть поглощается кислородом тропосферы. Часть УФ- излучения, достигающая поверхности Земли и непосредственно оказывающая воздействие на природу Земли и человека, это длинноволновое, 400-320 нм (УФ-А), и средневолновое, 320-280 нм (УФ-В). В промышленных городах, особенно зимой, УФ-излучение Солнца полностью поглощается техногенными компонентами городского воздуха (например, оксидами азота) и не поступает в помещение. В помещения может поступать лишь незначительная часть УФИ с длиной волны 300-400 нм, так как УФИ короче 300 нм задерживается обычным оконным стеклом, содержащим в своем составе оксиды титана, хрома и железа. Специальные увиолевые стекла пропускают УФ-лучи с длиной волны до 254,4 нм.

УФ-лучи являются наиболее биологически активными из всего диапазона. УФ-А вызывают так называемую раннюю пигментацию за счет образования пигмента меланина из аминокислоты тирозина, что обусловливает эффект загара, а также при достаточной дозе эритему, являющуюся специфической реакцией кожи на УФ-излучение. УФ-В влияют на поддержание нормального фосфорно-кальциевого обмена за счет синтеза холекальциферола (витамина Д 3) из дегидрохолестерина. Без эндогенного синтеза витамина Д3 его дефицит наблюдается даже при условии достаточного рациона питания, особенно у детей. В районах, характеризующихся недостатком УФ- излучения, необходима организация профилактического УФ-облучения в организованных коллективах повышенного риска (детские дошкольные учреждения, некоторые рабочие коллективы - горняков, работников метро) с помощью искусственных источников. Однако УФ-лучи при передозировке могут оказывать негативное воздействие на человека в виде повреждения структуры молекулы ДНК, что может привести к гибели, мутациям или опухолевому перерождению клетки. Бластомогенным действием обладают УФизлучение с длиной волны 240-313 нм. Кроме того, под действием УФ-лучей, отраженных от освещенной солнцем поверхности снега или льда, может развиться офтальмия - кератоконъюнктивит. Количество УФ-излучения, вызывающее через 6-10 ч едва заметное покраснение кожи незагорелого человека, называется эритемной или пороговой дозой. Оптимальная доза УФ-лучей равна 1/3-1/6 эритемной дозы. Профилактика светового голодания предусматривает необходимость применения искусственного УФ-облучения.

Основное действие инфракрасного излучения Солнца (ЭМИ с длиной волны более 760 нм) - тепловое. ИК-лучи, поглощаясь тка- нями организма, вызывают повышение температуры участка кожи и образование тепловой эритемы. В условиях населенных мест и тем более жилища ИК-лучи выраженного специфического биологического действия не оказывают; однако в условиях южной зоны или неудачной ориентации здания, расположенного в центральной зоне, периодически могут наблюдаться нарушения микроклимата помещения в результате его избыточной инсоляции в летнее время года, поэтому в санитарных правилах предусмотрены солнцезащитные приспособления (СанПиН2.2.1/2,1.1.1076-01). Для поддержания благоприятного микроклимата в помещении используются искусственные источники ИК-излучения - разнообразные приборы и сис-

темы отопления, а в лечебных целях применяются ИК-ванна, лампа Соллюкс, лампа Минина.

Значение видимого излучения (ЭМИ с длиной волны от 760 до 380 нм) велико. Видимые лучи, воздействуя на зрительный ана- лизатор (фоточувствительные клетки глаза), способствуют преобразованию энергии света, в результате чего организм получает до 90% информации об окружающей среде (психофизиологическое значение света). Зрительный анализатор за счет выработки гормона мелатонина регулирует биологические ритмы, т.е. циркадную систему, которая контролирует суточные ритмы сна и бодрствования, температуру тела, гормональную срецию и другие физиологические функции, включая и познавательную деятельность. При недостатке солнечного света в осенне-зимний сезон у некоторых людей развивается так называемый синдром сезонного расстройства, характеризующийся депрессией, упадком сил, желанием замкнуться в себе, а также повышенным аппетитом и потребностью во сне. Солнечный свет необходим человеку для выполнения зрительной работы (соци- альное значение света).

Все помещения, предназначенные для длительного пребывания людей, должны иметь хорошее естественное и искусственное освещение. Плохая световая обстановка жилых, учебных и производственных помещений в сочетании с высокой зрительной нагрузкой может явиться причиной зрительного и общего утомления, способствовать развитию близорукости, нистагма и некоторых других заболеваний, а также травм.

Естественное освещение

Естественное освещение помещений обеспечивается прямыми солнечными лучами (инсоляция), рассеянным светом с небосвода и отраженным светом противостоящего здания и поверхностью покрытия. Отсутствие естественного света вызывает явление «светового голодания», т.е. состояние организма, обусловленное дефицитом ультрафиолетового облучения и проявляющееся в нарушении обмена веществ и снижении резистентности организма. Помещения с постоянным пребыванием людей должны иметь естественное освещение.

Естественное освещение помещений обусловлено световым климатом, т.е. условиями наружного естественного освещения, которые зависят от общих климатических условий местности, степени про-

зрачности атмосферы, а также отражающей способности окружающих предметов.

На уровень естественного освещения помещений оказывает также влияние географическая широта местности, ориентация здания по сторонам света, наличие затенения окон противостоящим зданием, которое в свою очередь зависит от расстояния между ними, высоты и цвета стен, а также близости зеленых насаждений. Большое значение имеет величина оконных проемов, их форма и расположение.

Все эти факторы определяют продолжительность и интенсивность освещения помещения прямыми солнечными лучами, т.е. инсоляционный режим помещений. Гигиеническая классификация продолжительности инсоляции помещений учитывает общеоздоровительный, бактерицидный и психофизиологический эффекты прямого солнечного света, а также оптимальное сочетание всех факторов при соблюдении минимальных значений каждого из них. Рассеянный и отраженный свет, поступающий в помещение, не содержит многих частей солнечного спектра как видимого, так и ультрафиолетового диапазона, поглощенных различными объектами (поверхность земли, деревья, стены зданий, облака и др.), и поэтому с физиолого-гигиенических позиций не может считаться полноценным (табл.10).

Время инсоляции

Гигиеническая оценка

Характеристика эффектов

От 0 до 50 мин

Выраженная

недостаточность

инсоляции

Низкий бактерицидный эффект, негативная психофизиологическая реакция (жалобы на недостаточность инсоляции в 80% случаев)

От 50 мин до 1,5 ч

Недостаточность инсоляции

Высокий бактерицидный эффект, негативная психофизиологическая реакция (жалобы на недостаточность инсоляции в 50% случаев)

От 1,5

до 2,5 ч

Достаточная инсоляция (зона комфорта)

Высокий бактерицидный эффект, позитивная психофизиологическая реакция (жалоб нет)

Более 2,5 ч

Избыточная инсоляция

Негативная психофизиологическая реакция (жалобы на перегрев более чем в 50% случаев)

Гигиенические нормативы инсоляции дифференцированы по широте местности на определенные периоды года, для которых регла- ментировано нормативное время инсоляции (СанПиН2.2.1/2,1.1.1076- 01 «Гигиенические требования к инсоляции и солнцезащите помещений жилых и общественных зданий и территорий»): для северной зоны (севернее 58? северной широты) с 22 апреля по 22 августа не менее 2,5 ч; для центральной зоны (58-48? северной широты) с 22 марта по 22 сентября не менее 2 ч; для южной зоны (южнее 48? северной широты) с 22 февраля по 22 октября не менее 1,5 ч.

Различают три основных типа инсоляционного режима (табл. 11), а также различные варианты их сочетаний. Например, по продолжительности инсоляции режим может быть умеренным, а по температурным параметрам - максимальным.

Таблица 11. Типы инсоляционного режима помещений умеренной

климатической зоны северного полушария

Инсоляционный режим

Ориентация по сторонам света

Время инсоляции, ч

% инсолируемой площади пола

Тепловая радиация

кДж /м 3

ккал /м 3

Максимальный

ЮВ, ЮЗ

3300

Умеренный

Ю, В

40-50

2100-300

500-550

Минимальный

СВ, СЗ

2100

Инсоляционный режим необходимо учитывать при ориентации помещений различного функционального назначения. Ориентация окон в северных широтах на южную сторону обеспечивает более высокие уровни освещенности и длительную инсоляцию по сравнению с северным направлением. В средних и южных широтах для жилых, учебных зданий и основных производственных помещений аптек (асептический блок, ассистентская, комната провизора-аналитика, расфасовочная, кабинет управляющего) наилучшей ориентацией, обеспечивающей достаточную освещенность и инсоляцию помещений без перегрева, является южная и юго-восточная, восточная стороны. Она способствует в определенной мере санации воздуха, происходящей за счет проникновения и воздействия солнечных лучей, бактерицидной энергии которых достаточно для оздоровления внутренней среды помещения в обычных условиях.

На север, северо-запад, северо-восток следует ориентировать помещения, в которых не требуется высокая инсоляция или необходимо предупредить действие прямых солнечных лучей. Это вспомогательные помещения аптек (материальные помещения, моечная, дистил- ляционно-стерилизационная), помещения больниц (операционные, реанимационные, перевязочные, процедурные кабинеты, пищеблоки), кабинеты черчения, рисования, информатики и физкультурные залы детских и учебных учреждений, кухни жилых зданий. Эта ориентация обеспечивает равномерное естественное освещение помещений и исключает перегрев. Западная ориентация обусловливает перегрев помещений летом и недостаток солнечной инсоляции зимой.

Освещенность помещений зависит также от степени отражения света, которая определяется окраской потолка, стен, пола и оборудования в самом помещении. Темные цвета поглощают большое количество света, а светлая окраска увеличивает освещенность за счет отраженного света. Белый цвет и светлые тона обеспечивают отражение световых лучей на 70-90%, светло-желтый цвет - на 60%, светло-зеленый - на 46%, цвет натурального дерева - на 40%, голубой - на 25%, темно-желтый - на 20%, светло-коричневый - на 15%, темно-зеленый - на 10%, синий и фиолетовый - 6-10%.

В помещениях для отделки потолка рекомендован белый цвет, для стен - светлые тона желтого, бежевого, розового, зеленого, голубого, для мебели - цвет натурального дерева, для дверей и оконных рам - белый. Рекомендации по цветовому оформлению помещений должны учитывать влияние видимого света на организм человека. Красно-желтые цвета оказывают бодрящее действие, сине-фиолетовые - успокаивающее. В северных районах для окраски стен помещений рекомендованы оттенки желтого и оранжевого цвета, имитирующие солнечный свет, в южных районах - оттенки зеленовато-голубого, смягчающие блеск солнечного света в помещении.

На уровень естественного освещения влияют качество и чистота стекол, стен, потолка, затененность окон шторами, наличие высоких цветов на подоконниках. Так, загрязненные стены отражают свет в 2 раза меньше, чем недавно покрашенные. Закопченный потолок уменьшает освещенность комнаты на одну треть.

В зависимости от места расположения световых проемов естественное освещение подразделяется на боковое (через окна), верхнее (через световые фонари) и комбинированное (верхнее и боковое).

Естественное освещение нормируется в относительных величинах в зависимости от прихода светового потока Солнца (коэффициент естественной освещенности, световой коэффициент, угол падения и угол отверстия). Для гигиенической оценки естественного освещения используются светотехнический и геометрический (графический) методы исследования. С помощью светотехнического метода определяют коэффициент естественной освещенности (КЕО). Коэффициент естественной освещенности показывает, какую часть в процентах составляет естественная освещенность на рабочем месте внутри помещения, создаваемая светом неба (непосредственным или после отражения), к одновременному значению естественной освещенности на горизонтальной поверхности вне здания под открытым небом.

Для определения освещенности применяются фотоэлектрические люксметры типа Ю-116 с селеновым фотоэлементом и системой светофильтров (рис. 11) и люксметры типа Аргус-01 с полупроводниковым кремниевым фотодиодом. Механизм действия люксметра Ю-116 основан на преобразовании энергии светового потока в электрическую. Воспринимающая часть прибора - селеновый фотоэлемент соединен с гальванометром, шкала которого отградуирована в люксах. Световой поток, падающий на фотоэлемент, преобразуется в нем в электрический ток, который регистрируется гальванометром. Люксметры разных типов имеют 1, 2 или 3 шкалы для измерения освещенности в трех диапазонах: от 0 до 25 лк, от 0 до 100 лк и от 0 до 500 лк, а также и набор светофильтров, что позволяет измерять освещенность в большом диапазоне (от 0,5-1 до 30-50 тыс люкс).

Рис. 11. Люксметр Ю-116 с набором светофильтров

Величины КЕО нормируются в помещениях в зависимости от их функционального назначения. Диапазон величин КЕО для жилых помещений колеблется от 0,5 до 1%.

Таблица 12. Значение коэффициента естественной освещенности

для различных помещений аптек (СНиП 23-05-95)

Разряд зрительной работы

КЕО при

боковом естественном/ совмещенном освещении

Помещения аптеки

Очень

высокой

точности

0,15-0,3

2,5/1,5

Ассистентская, асептическая

Средней точности

0,5-1,0

1,5/0,9

Торговый зал

Малой точности

1,0-5,0

1,0/0,6

Моечная

Грубая

Материальная

КЕО при естественном освещении для различных помещений аптек в зависимости от их функционального назначения устанав- ливается при оптимальной ориентации помещений и минимальной продолжительности инсоляции их фасадов прямыми солнечными лучами. При этом учитывается характер зрительной работы и световой климат. Таким образом установлены минимальные величины КЕО для наиболее удаленных от окон точек помещения аптек

(табл. 12).

С помощью геометрического метода определяются световой коэффициент (СК), коэффициент заглубления (КЗ), угол падения и угол отверстия. Световой коэффициент выражает отношение площади световой (остекленной) поверхности окон, принимаемой за единицу, к площади пола помещения. Для расчета светового коэффициента измеряют площадь остекления окон и площадь пола (в м 2), а затем вычисляют их отношение. Световой коэффициент в жилых и детских дошкольных учреждениях рекомендован на уровне 1:5-1:6, в учебных помещениях 1:4-1:5. При проектировании аптек необходимо учитывать, чтобы СК был не ниже указанных величин (табл.13).

Таблица 13. Значение светового коэффициента в аптечных помещениях

Коэффициент заглубления выражает отношение расстояния от пола до верхнего края окна к глубине помещения. КЗ не должен превышать 2,5, что обеспечивается глубиной помещения до 6 м.

Оценка естественного освещения только по световому коэффициенту и коэффициенту заглубления может оказаться неточной, так как не учитывается возможность затенения окон противоположно стоящими зданиями и деревьями, поэтому для уточнения оценки дополнительно определяется угол падения световых лучей и угол отверстия.

Угол падения показывает, под каким углом световые лучи из окна падают на освещаемую горизонтальную рабочую поверхность в помещении. В том случае, если из-за противостоящего здания или деревьев в комнату попадает не прямой солнечный свет, а только отраженные лучи, их спектр лишен коротковолновой, самой эффективной в биологическом отношении части - ультрафиолетовых лучей. Угол падения света на рабочем месте должен быть не менее 27?. Угол, в пределах которого в определенную точку помещения попада- ют прямые лучи с небосвода, носит название угла отверстия. Угол отверстия должен быть не менее 5?. Определение и оценка величин углов падения света и отверстия должна проводиться по отношению к самым удаленным от окна рабочим местам. Характеристика и оценка достаточности естественного освещения помещения производятся в соответствии с гигиеническими нормативами (табл. 15).

Искусственное освещение

Искусственное освещение применяется в помещениях без естественного освещения или при выполнении точных зрительных работ с недостаточным естественным освещением в дневное время (совмещенное освещение). Основными гигиеническими требованиями

к искусственному освещению являются достаточный уровень его интенсивности, равномерность и постоянство во времени, отсутствие слепящего действия и резких теней, вызванных источником, обеспе- чение правильной цветопередачи. Создаваемый им спектр должен быть приближен к спектру естественного солнечного света.

Рациональное искусственное освещение обеспечивается правильным выбором системы освещения, источников света, светильников, их размещением, видом осветительной арматуры, направлением све- тового потока и характером света. Искусственное освещение может быть трех систем: общее (равномерное - при размещении светильников в верхней зоне помещения по всей ее площади или локализованное - при расположении светильников с учетом размещения оборудования и рабочих мест), местное и комбинированное (общее освещение дополняется местным). Равномерность освещения в помещении обеспечивает общая система освещения. Достаточная освещенность на рабочем месте может быть достигнута путем использования мес- тной системой освещения (настольные лампы). Наилучшие условия достигаются при комбинированной системе освещения (общее + местное). Использование местного освещения без общего в служебных помещениях недопустимо.

В качестве источников искусственного освещения в настоящее время применяются газоразрядные лампы и лампы накаливания. В лампах накаливания свечение возникает в результате нагрева вольфрамовой нити лампы до высоких температур. Ввиду низкой световой отдачи, небольшого срока службы (до 1500 ч), преобладания в спектре лампы желтовато-красных цветов, что искажает цветовое восприятие, применение ламп накаливания ограничено. Галогеновые лампы накаливания с вольфрамово-йодным (галогеновым) циклом более эффективны, их световая отдача и срок службы выше (до 8000 ч). Спектр галогеновых ламп накаливания близок к естественному свету, что позволяет их использовать в общественных помещениях (библиотеках, столовых и др.). В основном лампы накаливания используются для местного освещения, в помещениях с кратковременным пребыванием людей и в случаях, если применение газоразрядных ламп невозможно по технологическим причинам.

Применяемые газоразрядные лампы бывают низкого давления (люминесцентные) и высокого давления. Действующими нормами («Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий» СанПиН

2.2.1/2.1.1.1278-03) люминесцентные лампы приняты в качестве основных для общественных и производственных помещений из-за того, что они обладают значительной световой отдачей, позволяющей создать высокие уровни освещенности, экономичность, имеют мягкий, рассеянный свет и сравнительно невысокую яркость, их спектр излучения близок спектру дневного света. Принцип действия люминесцентных ламп заключается в преобразовании излучения ртутного разряда в видимые лучи, что достигается возбуждением люминофоров ультрафиолетовыми лучами. Для этого внутренняя поверхность колбы покрывается специальным составом - люминофором, внутри колбы помещается капелька ртути для образования ртутных паров. При пропускании электрического тока через лампу возникает ультрафиолетовое излучение, под влиянием которого люминофоры начинают светиться.

Люминесцентные лампы выпускаются нескольких типов в зависимости от состава люминофора. Лампы дневного света (ЛД) с голубоватым цветом излучения рекомендованы к применению в помещениях с правильным цветоразличением. Лампы белого цвета (ЛБ) с преобладанием в их спектре оранжево-желтых оттенков и особенно лампы холодного белого света (ЛХБ), белого света с улучшенной цветопередачей (ЛХЕ) и дневного света, правильной цветопередачей (ЛДЦ) используются в жилых, учебных и аптечных помещениях, где требуется хорошая цветопередача человеческого лица. Лампы теплого белого света (ЛТБ) имеют преобладание в спектре желтых и розовых лучей, поэтому используются для освещения вокзалов, вестибюлей кинотеатров, помещений метро.

Светильник применяется для защиты глаз от слепящего действия источника света. Светильник состоит из двух частей - источника света (лампы) и осветительной арматуры. С точки зрения перерасп- ределения светового потока различают светильники прямого, отраженного и рассеянного света. Арматура светильников прямого света за счет внутренней отражающей поверхности направляет около 90% света лампы на освещаемое место. Светильники отраженного света, наоборот, большую часть светового потока направляют вверх, за счет чего помещение освещается мягким, равномерным рассеянным светом, но при этом теряется 50% света. Наиболее часто в жилых, учебных, а также больничных и аптечных помещениях используются светильники рассеянного света, который распределяется равномерно по всему помещению, не дает резких теней и бликов. Для получе-

ния рассеянного света в светильниках применяется молочное или матовое стекло.

Количество светильников и мощность ламп рассчитываются по уровню освещенности на рабочих местах, которое должно соответствовать установленным гигиеническим нормативам. Измерение уровня искусственного освещения непосредственно на горизонтальной поверхности рабочего места производится с помощью люксметра (объективный метод). Контрольные точки для измерения минимальной освещенности размещают в центре помещения, под светильниками, между светильниками и их рядами, у стен на расстоянии не менее 1 м. Измерение уровня искусственного освещения проводится в темное время суток.

На практике при проектировании осветительных установок и экспертизе проектов производственных помещений часто применяются расчетные методы определения освещенности. Наиболее широко используется метод удельной мощности. Количество светильников и мощность ламп рассчитываются по уровню освещенности на рабочих местах, которое должно соответствовать установленным гигиеническим нормативам.

Метод удельной мощности (метод ватт) рекомендуется для ориентировочного определения искусственной освещенности. Он основан на подсчете суммарной мощности всех источников света (W) в помещении и определении удельной мощности ламп (P) путем деления W на площадь помещения (S) (P=W/S, Вт/м 2). Искусственная освещенность рассчитывается при умножении удельной мощности ламп на коэффициент е, показывающий, какую освещенность (в лк) дает удельная мощность, равная 1 Вт/м 2 . Значение е для помещений с площадью не более 50 м 2 при напряжении в сети 220 В для ламп накаливания мощностью менее 100 Вт равно 2,0; для ламп 100 Вт и более - 2,5; для люминесцентных ламп - 12,5.

Пример. Площадь материальной комнаты 25 м 2 . Она освещается двумя лампами накаливания по 100 Вт, напряжение в сети 220 В.

Удельная мощность ламп = (100 Вт * 2 лампы) : 25 м 2 = 8 Вт/м 2 .

Искусственная освещенность = 8 Вт/м 2 * 2,5 = 20 лк.

Необходимая величина освещенности на рабочих местах устанавливается в зависимости от размера объектов различения, так как рассматривание мелких деталей при недостаточной освещенности приводит к значительному снижению зрительной работоспособности и

производительности труда. Нормы искусственной освещенности при выполнении зрительных работ разной точности (от I до VI разряда) в аптечных помещениях приведены в табл. 14-15.

Таблица 14. Нормы искусственной освещенности аптечных помещений

(СНиП 23-05-95)

Характеристика зрительной работы

Размер объектов различения, мм

Разряд зрительной работы

Освещенность на рабочем месте, лк

Помещения аптеки

Очень

высокой

точности

0,15-0,3

500-400

Ассистентская, асептическая

Средней точности

0,5-1,0

(200)150

Торговый зал

Малой точности

1,0-5,0

(200)100

Моечная

Грубая

50-75

Материальная

Таблица 15. Нормы естественного, совмещенного и искусственного освещения жилых, учебных, аптечных и лечебных помещений (извлечения из СанПиН 2.2.1/2.1.1.1278-03)

Освещение

Наименование помещения

Естественное/ совмещенное (КЕО), %

Искусственное (люминесцентные лампы), лк

Жилые комнаты

0,5/-

Помещения аптек

Площадь для посетителей в торговом зале

-/0,4

Рецептурный отдел, отделы ручной продажи, оптики, готовых лекарственных средств

-/0,6

Ассистентская, асептическая, анали- тическая, фасовочная, заготовочная концентратов и полуфабрикатов, кон- трольно-маркировочная

-/0,9

Окончание табл. 15

Стерилизационная, моечная

1,0/0,6

Помещения хранения лекарственных и перевязочных средств, посуды

Помещения хранения кислот, дезин- фекционных средств, горючих и легковоспламеняющихся жидкостей

Кладовая тары

Учебные помещения школ и вузов

Аудитории, классные комнаты школ

1,5/1,3

Аудитории, учебные кабинеты, лаборатории вузов

1,2/0,7

Кабинеты информатики

1,2/0,7

Кабинеты черчения и рисования

1,5/0,7

Помещения лечебно-профилактических учреждений

Операционная

Родовая, перевязочные, реанимационные

1,5/0,9

Предоперационная

1,0/0,6

Кабинеты врачей

1,5/0,9

Палаты для новорожденных, послео- перационные, интенсивной терапии

1,0/-

Палаты

0,5/-

Лабораторная работа «Определение и оценка естественного и искусственного освещения помещения»

Задания студенту

1. Определить тип инсоляционного режима учебного помещения.

2. Определить показатели естественного освещения в учебном помещении (световой коэффициент, коэффициент заглубления) и на рабочем месте (КЕО, углы падения света и отверстия). Оценить условия естественного освещения помещения в целом и своего рабочего места.

3. Определить освещенность помещения искусственным светом объективным и расчетным методами. Дать оценку освещенности и характеристику системы освещения, источников света, вида арматуры и характера света в применяемых светильниках.

4. Написать санитарно-гигиеническое заключение на основании сопоставления результатов определения показателей освещенности с их гигиеническими нормативами (СанПиН2.2.1/2.1.1.1278-03).

Методика работы

1. Определение типа инсоляционного режима учебного помещения проводится с учетом ориентации здания по сторонам света, затенения окон соседними домами, величиной светопроемов.

2. Определение и оценка показателей естественного освещения помещений

Определение коэффициента естественной освещенности Измерить с помощью люксметра естественную освещенность на

рабочем месте в помещении (Е 1) и освещенность горизонтальной плоскости вне здания (Е0). Расчет коэффициента естественной освещенности производится по формуле:

КЕО = Е 1 100 / Е 0 , %,

где: Е1 - освещенность на горизонтальной поверхности внутри помещения;

Е0 - освещенность горизонтальной плоскости вне здания.

Определение светового коэффициента

Для расчета светового коэффициента измерить площадь остекления окон и площадь пола (в м 2), затем вычислить их отношение. СК выражается дробью, числитель которой - единица, а знаменатель - частное от деления площади помещения на площадь поверхности стекол. Пример. Остекленная поверхность окон помещения равна в сумме 4,25 м 2 , площадь пола - 28,4 м 2 . СК = 1:4,25/28,4 = 1:6.

Определение коэффициента заглубления

Для расчета коэффициента заглубления измерить расстояние от пола до верхнего края окна, а также расстояние от светонесущей до противоположной стены, затем вычислить их отношение. КЗ выражается дробью, при этом числитель дроби приводится к 1, для чего числитель и знаменатель делят на величину числителя.

Определение углов падения света и отверстия (рис. 12)

Угол падения (а) образован двумя линиями, одна (СА) идет от верхнего края окна к точке, где определяются условия освещения, вторая (АВ) - линия на горизонтальной плоскости, соединяющая точку измерений со стеной, на которой расположено окно.

Рис. 12. Угол падения света (α) и угол отверстия (β)

Угол отверстия (β) образуется двумя линиями, идущими от точки измерения на рабочем месте: одна (СА) - к верхнему краю окна, другая (АД) - к самой верхней точке противостоящего здания или какого-либо ограждения (забор, деревья и т. п.).

Измерение углов падения и отверстия может производиться: визуально - при помощи линейки и транспортира, графическим методом - путем построения в определенном масштабе прямоугольного треугольника, а также оптическим угломером. Для определения углов падения и отверстия графическим методом нужно замерить рулеткой расстояние по горизонтали от точки на рабочей поверхности до светонесущей стены (рис. 12 - АВ). Затем от точки пересечения этой горизонтали со стеной измерить расстояние по вертикали до верхнего края окна (рис. 12 - ВС). Оба отрезка в определенном масштабе нанести на чертеж. Соединив на чертеже точку, соответствующую верхнему краю окна (С), с точкой на рабочей поверхности (А), получить прямоугольный треугольник, острый угол при основании которого (α) и есть угол падения света. Он может быть измерен транспортиром или с помощью таблицы тангенсов: tgα = СВ/АВ. Для измерения угла отверстия необходимо отметить на поверхности окна горизонтальную точку, совпадающую со зрительной линией, направленной из точки измерения к верхнему краю противостоящего здания или предмета. Нанести эту отметку в прежнем масштабе на чертеж (рис. 12 - точка Д) и, соединив ее с точкой измерений на рабочей поверхности (рис. 12 - АД), получить угол отверстия (β), который также можно измерить транспортиром или определить с помощью таблицы тангенсов (табл. 16) как разность между углами

Тангенс

Угол,

град

Тангенс

Угол,

град

Тангенс

Угол,

град

0,176

0,404

0,675

0,194

0,424

0,700

0,213

0,445

0,727

0,231

0,466

0,754

0,249

0,488

0,781

0,268

0,510

0,810

0,287

0,532

0,839

0,306

0,554

0,869

0,325

0,577

0,900

0,344

0,601

0,933

0,364

0,625

0,966

0,384

0,649

1,000

Характеристика и оценка достаточности естественного освещения помещения производится в соответствии с нормативами, приведенными в таблицах.

3. Определение и оценка искусственного освещения

Характеристика (описание) системы искусственного освещения (общее равномерное, общее локализованное, местное, комбинированное, совмещенное), типа источника света (лампы накаливания, люминесцентные и т.д.), их мощности, вида арматуры и в связи с этим направления светового потока и характера света (прямой, рассеянный, отраженный), наличия или отсутствия резких теней и блесткости.

Определение искусственной освещенности

Измерить освещенность непосредственно на рабочих поверхностях с помощью люксметра;

Определить освещенность ориентировочно расчетным методом.

Образец протокола для выполнения лабораторного задания «Гигиеническая оценка естественного и искусственного освещения»

1. Определение и гигиеническая оценка типа инсоляционного режима исследуемого помещения: ориентация здания по сторонам света... расстояние до противостоящего здания... его высота.. , цвет стен... расстояние до зеленых насаждений... величин оконных проемов...

2. Определение вида работ по степени точности (в зависимости от размера объекта различения).

3. Гигиеническая оценка естественного освещения:

Общая характеристика: в лаборатории... окон, цвет окраски: стен... потолка... пола... периодичность очистки оконных стекол.

Определение КЕО с помощью люксметра Ю-116. Горизонтальная освещенность вне здания... лк, Освещенность на рабочем месте... лк,

КЕО = ... %.

Определение СК.

Площадь остекления окон... м 2 , площадь пола... м 2 ,

СК = ...

Определение КЗ.

Расстояние от пола до верхнего края окна... м, Расстояние от светонесущей до противоположной стены... м,

КЗ = ...

Определение угла падения света (чертеж и расчеты).

Определение угла отверстия (чертеж и расчеты).

4. Гигиеническая оценка искусственного освещения:

Характеристика искусственного освещения: в лаборатории... система освещения, количество светильников... источник освещения... тип ламп... количество ламп. мощность одной лампы... вид осветительной арматуры... , светильники... света, содержание осветительных установок и периодичность очистки светильников.

Определение искусственной освещенности.

Объективным методом (с помощью люксметра). Освещенность на рабочем месте... лк.

Расчетным методом: в лаборатории площадь пола... число светильников... тип ламп... количество ламп... их мощность... удельная мощность... освещенность... лк.

Заключение (образец)

1. Помещение лаборатории (аптеки) с учетом характера зрительной работы и светового климата имеет хорошее (не совсем удовлетворительное) освещение. Все показатели естественного освещения соответствуют гигиеническим нормативам [отдельные показатели (перечислить, какие) не соответствуют гигиеническим нормативам]:

КЕО = ... (указать соответствие нормативу);

Световой коэффициент = ... (указать соответствие нормативу);

Угол падения света = ... (указать соответствие нормативу);

Угол отверстия = ... (указать соответствие нормативу).

Подбор цветовой отделки поверхностей производственных помещений и оборудования, их чистота соответствует (не соответствует) гигиеническим требованиям, основанным на учете характера выполняемой работы.

  • ТЕМА 14. ГИГИЕНИЧЕСКАЯ ОЦЕНКА ЗАСТРОЙКИ, ПЛАНИРОВКИ И РЕЖИМА ЭКСПЛУАТАЦИИ АПТЕЧНЫХ ОРГАНИЗАЦИЙ (АПТЕК)
  • ТЕМА 15. ГИГИЕНИЧЕСКИЕ ТРЕБОВАНИЯ К УСЛОВИЯМ ТРУДА АПТЕЧНЫХ РАБОТНИКОВ
  • ТЕМА 16. ГИГИЕНИЧЕСКАЯ ОЦЕНКА ЗАСТРОЙКИ, ПЛАНИРОВКИ И РЕЖИМА ЭКСПЛУАТАЦИИ ОПТОВЫХ ФАРМАЦЕВТИЧЕСКИХ ОРГАНИЗАЦИЙ (АПТЕЧНЫХ СКЛАДОВ) И КОНТРОЛЬНО- АНАЛИТИЧЕСКИХ ЛАБОРАТОРИЙ
  • Искусственное освещение должно соответствовать назначению помещения, быть достаточным, регулируемым и безопасным, не оказывать сле пящего действия и другого неблагоприятного влияния на человека и внутреннюю среду помещений.

    Общее искусственное освещение должно быть предусмотрено во всех, без исключения помещениях. Для освещения отдельных функциональных зон и рабочих мест, кроме того устраивается местное освещение.

    Искусственное освещение помещений стационаров осуществляется люминисцентными лампами и лампами накаливания. Рекомендуемые освещенность, источник света, тип лампы принимается в соответствии с пособием к СНиП 2,08-89 по проектированию лечебно-профилактических учреждений. Предусматриваемые для установки и применяемые люминисцентные аппараты с особо низким уровнем шума.

    Светильники общего освещения, размещаемые на потолках, должны быть со сплошными (закрытыми) рассеивателями.

    Для освещения палат (кроме детских и психиатрических отделений) следует применять настенные комбинированные светильники (общего и местного освещения), устанавливаемые у каждой койки на высоте 1,7 м от уровня пола.

    В каждой палате, кроме того, должен быть специальный светильник ночного освещения, устанавливаемый в нише около двери на высоте 0,3 м от пола (в детских и психиатрических отделениях светильники устанавливаются в нишах над дверными проемами на высоте 2,2 м от уровня пола).

    Во врачебных смотровых кабинетах необходимо устанавливать настенные светильники для осмотра больного.

    Работами ряда авторов обоснован ряд гигиенических и экономических преимуществ люминисцентного освещения по сравнению с лампами накаливания. По влиянию на работоспособность, цветовосприятие и утомление зрительного анализатора лампы накаливания менее совершенны, чем люминисцентные. Поэтому при выборе источников света следует отдавать предпочтение светильникам с люминисцентными лампами типа ЛХБЦ (холодного белого цвета с исправленной цветностью излучения) и др. В противошоковых, операционных, предоперационных, перевязочных, родовых, реанимационных устанавливают светильники закрытого типа со сплошными рассеивателями типа ЛПП-01, Арт-352, в кабинетах врачей-специалистов закрытые неполностью (Арт-353).

    3.3.2. Исследование искусственного освещения.

    Руководствуясь изложенным выше, инструментальному исследованию искусственной освещенности должно предшествовать описание осветительной системы, типа светильников, их размещения в обследуемом помещении, источника света; необходимо отметить цветность света, наличие или отсутствие пульсаций светового потока, определить высоту подвеса светильников, а затем замерить освещенность на рабочем месте объективным люксметром или через удельную мощность и пр.

    Таблица 9.

    Нормы искусственного освещения (извлечение из СНиП-П-4-79 «Естественное и искусственное освещение»).

    Наименование помещений

    Освещенность в люксах

    люминисцентные лампы

    лампы накаливания

    Операционные в больницах

    Родовые; реанимационные, перевязочные

    Кабинеты врачей

    Кабинеты врачей в поликлинике

    Диагностические лаборатории

    Палаты больниц и санаториев

    Главные коридоры в больницах

    Расчетный способ определения искусственной освещенности основан на подсчете суммарной мощности всех ламп в помещении и определении удельной мощности ламп (в Вт/м 2). Эту величину умножают на коэффициент, показывающий какую освещенность (в лк) дает удельная мощность, равная 1 Вт/ м 2 . Значение ее для помещений с площадью не более 50 м 2 при напряжении в сети 220 в для ламп накаливания 180 Вт и более - 2,5; для ламп накаливания мощностью 100 Вт равна 2,0; для люминисцентных ламп - 1,25.

    Пример: Палата площадью 33 м 2 освещается двумя светильниками мощностью 150 Вт (лампы накаливания). Удельная мощность равна 150 Вт х 2: 30 = 10 Вт/м 2 . Освещенность равна 10 х 2,5 = 25 лк, что значительно ниже гигиенической нормы.

    САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ.

      Дать описательную характеристику естественному и искусственному освещению учебной аудитории кафедры.

      Провести исследование и оценить естественную освещенность в учебной комнате по следующим геометрическим (графическим) показателям: световой коэффициент (СК), угол падения, угол отверстия на рабочем месте и коэффициент глубины заложения.

      Ознакомиться с устройством и освоить правила работы с объективным люксметром.

      Определить и оценить абсолютную освещенность и рассчитать коэффициент естественной освещенности (КЕО) в учебной аудитории и на рабочих местах.

      Оценить инсоляционный режим в учебной аудитории.

      Рассчитать и оценить искусственную освещенность в учебной аудитории через удельную мощность. При расчете воспользуйтесь таблицей номер 36 на стр.110 «Руководства к практическим занятиям по гигиене» Ю.П.Пивоварова с соавт., освещенность аудитории, учебных кабинетов и лабораторий согласно СНиП-П-4-79 «естественное и искусственное освещение» на уровне 0,8 м при лампах накаливания должна быть равна 150 лк, при люминисцентных лампах - 300 лк.

      Результаты всех выполненных исследований оформить протоколом (по приведенной ниже форме) с заключением и рекомендациями по оптимизации инсоляционного режима, естественной и искусственной освещенности в обследуемом помещении учебной аудитории.

    Заключение получают путем сравнения полученных результатов с гигиеническими нормативами, используемыми для оценки освещенности помещений.

    Решение ситуационных задач по теме «Оценка инсоляционного режима, естественного и искусственного освещения больниц».

    ПРОТОКОЛ

    Исследования и гигиенической оценки освещенности

    (наименование помещения)

    Дата и время исследования

    1. ИСССЛЕДОВАНИЕ ЕСТЕСТВЕННОЙ ОСВЕЩЕННОСТИ

    1. Помещение на этаже, его ориентация, размеры помещения, отделка,

    цвет стен, потолка

    2. Размеры окон, их число, расположение

    общая площадь застекленных частей окон, м 2

    расстояние верхнего края от потолка см, высота подоконника

    см, ширина простенков, м

    вид оконных переплетов. Состояние стекол

    3. Световой коэффициент, угол падения,

    отверстия глубина заложения, КЕО%

    освещенность дневным светом

    4. Результаты оценки инсоляционного режима

    2. ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ

    (указать какое)

    1. Его организация: общее, местное, комбинированное

    Тип светильников (прямого, рассеянного, отраженного)

    количество, размещение

    высота подвеса, мощность ламп Вт, общая мощность,

    состояние арматуры, защитные приспособления (есть, нет)

    2. Яркость по прибору нит, по формуле

    Освещенность в разных точках (колебания)

    равномерная нет

    ЗАКЛЮЧЕНИЕ

    КОНТРОЛЬНЫЕ ВОПРОСЫ